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Abstract-An analysis of combined forced and free convection heat transfer of a quasi-incompressible fluid 
flowing laminarly in a horizontal tube is presented. The physical properties are assumed to be independent 
of temperature and the heat flux imposed at the tube wall is considered to be uniform along the tube and 
around the circumference. The flow and heat transfer are specialized for fully developed conditions and the 
resulting partial differential equations are solved by a perturbation method. Approximate analytical solu- 
tions as well as average Nusselt numbers are presented graphically for a range of Prandtl and Grashof 
numbersofphysical interest. The predicted velocity, temperature and average Nusselt numbers are compared 

with available experimental data, 

NOMENCLATURE 

characteristic velocity, J(gRi/&); 
body force ; 
specific heat at constant pressure ; 
pipe diameter ; 
dimensionless parameter, GrE/Re* ; 
acceleration due to gravity ; 
components of acceleration due to 
gravity in the Z, T, and 4 directions ; 
Grashof number, fig(T,‘, - T,)Rf/ 
9; 
Grashof number based on axial 
temperature gradient, /IgRf(dTJ 

dZ)/v2 ; 
average heat transfer coeffkient for 
fully developed flow based on wall 
to bulk temperature difference ; 
local (circumferential) heat transfer 
coefficient for fully developed flow 
based on wall to bulk temperature 
difference ; 
thermal conductivity; 
length of heated section ; 
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Nu, 
N+#4 

Nuo, 

p, 
P> 
Pe, 
pr, 
4’9 
Ra, 
R, 
r, 

Re, 
T 
u, 
% 
V, 
V, 

W, 

2 
Z, 

average Nusselt number, hRi/k; 
local (circumferential) Nusselt num- 

ber, W)&/k ; 
Nusselt number for pure forced 
convection ; 
molecular pressure; 
dimensionless pressure , P/p Wi ; 
Peclet number, RePr ; 
Prandtl number, pep/k ; 
average wall heat flux ; 
Rayleigh number PrGr,; 
pipe radius ; 
radial distance measured from 
centerline of the tube; 
Reynolds number, WaJv ; 
temperature of fluid ; 
radial fluid velocity ; 
dimensionless radial velocity, U/A& ; 
angular fluid velocity ; 
dimensionless angular velocity, 
‘VIA& ; 
axial fluid velocity ; 
dimensionless axial velocity, W/W, ; 
axial coordinate ; 
dimensionless axial distance, Z/L. 
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Greek symbols 
thermal diffusivity ; 
volumetric coefficient of thermal 
expansion ; 
dimensionless parameter, 

PcGrzlJ(Re) ; 
dimensionless group, _ _ 

y = R$ 

Laplacian in cylindrical coordin- 
ates 

vz,L+X+la’. 
8’12 uatl r042’ 

Laplacian of Laplacian in cylindri- 
cal coordinates 

la 2 a4 +--+-- 
13 atj ~2 apat+ 

2 a3 
- r”@ijq 

dimensionless parameter defined by 

s = P(T, - T,); 
dimensionless radial coordinate, 

r/&i 
dimensionless temperature, 

(T, - T)/(KJ - Xl); 
dynamic viscosity ; 
kinematic viscosity 
density ; 
polar angle measured from top 
point of tube circumference ; 
dissipation function ; 
dimensionless stream function. 

refers to zero, first, and second- 
order approximations ; 
refers to’centerline; 
refers to diameter; 
refers to fluid ; 
refers to the inside of the tube wall ; 
refers to mixing cup (bulk) tem- 
perature. 

1. INTRODUCTION 

PURE forced convective heat transfer seldom 
occurs in reality since the density of ordinary 
fluids is dependent on temperature. In fact, 
mixed convection, that is, combined free and 
forced convection, is the most general type of 
phenomena. Pure forced or pure free convection 
are only the limiting cases when either type of 
mixing motion can be neglected in comparison 
to the other. 

In many practical applications where both 
free and forced convection effects are of com- 
parable order of magnitude, an indication of the 
relative magnitude of the two effects may be 
obtained from a study of the nondimensional 
parameters appearing in the governing con- 
servation equations of the fluid flow and energy. 
Still, some situations are encountered where a 
clear distinction between the two types of 
motion is difficult to make. This results in a 
somewhat arbitrary designation of the govern- 
ing convective heat transfer phenomena. Metais 
[l] has arbitrarily considered mixed convection 
to occur when the calculated heat transfer 
coefficient is ten per cent higher than the cor- 
responding heat transfer coefficient for either 
pure free or pure forced convection situations. 

For pure forced convection analysis and 
experiment covering the thermally developed 
and the thermally developing regions have 
received considerable attention. When natural 
convection effects are pronounced the orienta- 
tion of the tube axis becomes important, the 
two limiting alignments being vertical and 
horizontal. In vertical tubes the velocities due 
to buoyancy forces are parallel to the direction 
of the forced motion ; thus, rotational symmetry 
is retained, and it is possible to solve analytic- 
ally the equations of motion and energy even 
in the case of mixed convection. However, in 
the case of horizontal tubes, the buoyancy and 
pressure forces in combined free and forced 
convection are perpendicular to each other, 
resulting in the loss of rotational symmetry 
[24]. The fluid motion is thus much more 
difficult to analyze: hence. one can appreciate 
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the mathematical difficulties encountered in 
solving the resultant problem. 

An excellent survey of literature of combined 
free and forced convection in vertical tubes is 
given in the work of Hallman [5], and Ojalvo 
and Grosh [6]. For a historical review of the 
general problem of mixed convection, the 
reader is referred to Metais [l]. Recent experi- 
mental work in this area was reported by 
Mori et al. [2], Shannon and Depew [7], 
McCamas and Eckert [8], and Eckert and 
Peterson [9]. On the other hand, the latest 
theoretical attempts were by Morton [3], Iqbal 
and Stachiewicz [4], and Mori et al. [lo]. An 
up to date survey of combined free and forced 
convection in a horizontal tube is given by 
Faris [ll]. 

While many aspects of the physical nature of 
the combined phenomena remain uncertain, 
this much has been established : 

(4 

(b) 

(cl 

(4 

(4 

(0 

k) 

In general free convection effects are 
more pronounced for low Prandtl num- 
ber fluids than for high ones. 
There are no appreciable free convection 
effects in the thermal entrance region. 
For a uniform wall heat flux boundary 
condition, fully developed heat transfer 
is reached asymptotically after a con- 
siderable starting length [2, 71. For 
example, Z/D > 700 was needed to estab- 
lish fully developed heat transfer for 
water [7] as compared to Z/D = 180 
for air [2]. 
For turbulent flow, buoyancy has little 
effect on the velocity and temperature 
fields, liquid metals being excepted. 
For constant heat flux boundary con- 
ditions and fully developed heat transfer 
aT/az = aTdaz = constant. 
Both velocity and temperature profiles, 
while similar to each other, are markedly 
different from their respective counter- 
parts for pure forced convection. 
In the fully developed region, the average 
Nusselt number [2, 7, 8, 111 is higher 
than that of pure forced convection. 

The problem considered in the present study 
is one of combined free and forced convection 
heat transfer for laminar flow inside a horizontal 
circular tube with a uniform heat tlux prescribed 
at the wall. The primary motivation is to 
improve our understanding of the combined 
process and to extend the existing solutions 
to a wider range of conditions so that the 
analytical results may find direct physical 
application. The mathematical model considered 
herein approximates many engineering prob- 
lems of practical importance such as heating 
or cooling of fluids inside channels. 

2. ANALYSIS 

2.1 Physical model and simplifying assumptions 
For the geometry depicted in Fig. 1, the 

natural choice is a cylindrical coordinate system 
with the position denoted by the coordinates 
r, (6, and Z. The problem considered here is 
one of combined free and forced convection 

FIG. 1. Schematic diagram and coordinate system. 

in a horizontal circular tube. The flow is 
considered to be steady and laminar. In addition, 
temperature and velocity profiles in the fluid 
are assumed fully developed, a condition that 
has been discussed in detail elsewhere [ll]. 
The solutions are expected to be valid only at 
distances far enough from entrance and exit 
of the tube where both the velocity and tempera- 
ture profiles are invariant with the axial 
coordinate at each cross section, that is, in the 
fully developed flow and heat transfer region. 
All physical properties are considered to be 
independent of temperature. The density is 
temperature dependent only in the buoyancy 
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term. Furthermore, the axial pressure gradient 
is considered constant. This assumption is 
valid except for very low Reynolds numbers 
[8], that is, when Rei < 650. The boundary 
condition imposed on the tube wall is that of 
uniform heat flux along the tube and around 
the circumference. In addition, the inside tube 
wall temperature is assumed constant along 
the periphery but varies linearly downstream 

INI. 

2.2 Discussion of the assumptions 
Because of differences in density resulting 

from the temperature differences between the 
tube wall and the fluid, the effects of buoyancy 
are superimposed on the fluid motion along 
the tube axis as a consequence of external 
pressure forces. The secondary flow, produced 
by these buoyancy forces, distorts the Poiseullian 
velocity distribution to a form of helical motion 
[lo]. The body force term in the momentum 
equations gives rise to the circulation of the 
fluid within the tube which results in a non- 
uniform circumferential inside tube wall tem- 
perature. However, as shown in detail elsewhere 
[ll], the angular variation of the wall tem- 
perature can be neglected for most physical 
situations of practical interest. 

As a consequence of the secondary flow pro- 
duced by the buoyancy forces, there are present 
in the fluid tangential and radial velocity 
components. Far downstream from hydro- 
dynamic and thermal entrance regions the 
velocity components resulting from the constant 
temperature difference between the tube wall 
and the bulk fluid [2-4] will eventually become 
independent of the axial distance. The present 
analysis is confined to this region of the flow 
commonly referred to as the fully developed 
region. 

Conservation of mass. 

au u 1av 
$+;+--=o 

r 84 

Conservation of momentum. 
r-direction 

p u!!+‘du_/z [ & r a4 r 1 __ap 
- dr 

+p ~2u-!p!! [ r2 a4 1 +pg, (2) 
&direction 

p IIg+K!!I+~ 
[ 

=_lap 
r 84 1 rW 
[ V 2 au 

+ P v2v -p+yz+j-J 
1 

+ PSg (31 

Z-direction 

p [ ug+e$ 1 = -~+pv2w+pgz(4) 

Conservation of energy. 

pc, tJg+var+wg 
[ r 84 1 

=k[V’T+$]+p4. (5) 

The boundary conditions for the preceding 
equations are arrived at from the assumption 
of a no-slip condition of the velocity at the tube 
wall, from the finiteness of the flow and tem- 
perature at the tube axis, and from the specifica- 
tion of thermal boundary conditions at the 
tube wall. Consequently, 

and 

U, V, W, T are finite at r = 0 (6) 

2.3 The governing equations 
Subject to the assumptions made previously, 

the conservation equations written in cylindrical 
coordinates reduce to : 

U=V=W=() 

at r=Ri. (71 
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It should be noted that the foregoing system 
of equations is nonlinear, nonhomogeneous, 
and coupled. Understandably then, they are 
not amenable to a closed form solution. 
Furthermore, no formal procedure for solving 
the general problem is available, nor does one 
appear imminent ; hence, various simplifying 
approximations have been introduced in order 
to make the physical problem more tractable 
mathematically. Consequently, one must resort 
to approximate methods of solution, namely, 
finite difference approximations or perturbation 
techniques. 

In principle, an approximate finite-difference 
solution can be found for a system of partial 
differential equations which will converge to 
the exact analytical solution ; however, it is 
not generally true that all finite difference 
schemes will readily converge. If convergence 
is not achieved, the system is said to be unstable 
[12]. Unfortunately, the stability criteria can 
rarely be determined a priori, especially for a 
nonlinear system of equations such as the one at 
hand. Since the primary objective of this study 
is to obtain a qualitative understanding of the 
phenomena, it was felt desirable to obtain a 
closed form approximate analytical solution. 
Therefore, finite difference technique for solving 
the conservation equations was not considered. 
As will be shown later after a few key assump- 
tions it is possible to arrive at an approximate 
closed form solution. 

2.4 Reduction of the governing equations 
A question of primary importance is the 

definition of characteristic tangential and radial 
velocities for the combined free and forced 
convection heat transfer. For this problem 
there is no unique characteristic velocity that 
can be determined a priori. Obviously, the 
radial and tangential velocities are not of the 
same order of magnitude as the axial velocity, 
and hence they cannot all be normalized by a 
single reference velocity, say, the mean velocity 
or the centerline velocity as was done previously 

[3, 41. Thus, a characteristic velocity must be 
determined from the differential equations. 

Moreover, since the radial and tangential 
velocity components are due to the buoyancy 
force in the fluid, then a parameter depicting 
the temperature distribution in the fluid must 
be introduced in the dimensionalization scheme. 
With this in mind, it was felt that the velocity 
components should be normalized as follows : 

u = Uf&A; v = I/l&A; w = W/W, 63) 

where E = /3(T, - T,) and /I is the thermal 
expansion coefficient and A is a characteristic 
velocity to be determined later. The introduction 
of such a reference velocity was first suggested 
by Ostrach [13] in his analysis of a pure free 
convection problem. It is felt that Ostrach’s 
approach is also applicable in the present 
combined free and forced convection problem. 

In order to obtain explicit dimensionless 
parameters, the characteristic velocity A must 
be determined. This may be deduced from the 
momentum equation. Thus, depending on the 
type of the flow under consideration, the 
buoyancy force may be equated to either the 
viscous or the inertia force to yield A. For 
example, if the flow is such that the buoyancy 
and inertia forces are of the same order of 
magnitude, equating them yields [ 1 l] 

A =J(?)=J(&? TmJ. (9) 

By introducing the dimensionless variables 
defined below 

? = rfRi; z = ZIL; p = PIpW~; 

8 = K’ - wKw - %I) 

one can show that equations (l)(5) reduce to the 
following : 

Conservation of mass. 

au u iav o -- = 
784 . 
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Conservation of momentum. 

r-direction 

2 av --- 
~2 w 1 (11) 

&direction 

I 

1 ap =--- 
4w 

+ R~?~G,. [$(k$(‘Iv)) + $$ 

1 + gesin$. (12) 
Z-direction 

2.5 Solution of the governing equations 
The continuity equation is identically satisfied 

by introducing the stream function $ defined as 

1 ati - = v and a* 

?a4 
- - = v. 

all 
(17) 

After writing equations (11) and (12) in terms 
of $, the pressure gradient can be eliminated 
between the two equations by cross differentia- 
tion and subtraction yielding 

1 v2* 

de 
+ sin4% 1 (18) 

From the definition of $, as given by equation 
(17), it can be seen that the Z-component of 
the momentum equation can be written as 

aw v atv 

uavl+i%= - 
Similarly, the energy equation (14) becomes 

i azw 
+7@P 1 (13) v28 + PrJGr 

9 
Conservation of energy. 

R. 2a2e 0 I F +’ _+- 
L az2 JGr 

cD+ (14) 

The boundary conditions in dimensionless 
form for the preceding equations are : 

w, 8, v, u are finite at q = 0 (15) 

and 

w=Q=t~=u=Oat~=l (16) 

+ 
Gr,Re 
---w=o. 

Gr* 
(20) 

The viscous dissipation and axial heat conduc- 
tion terms have been neglected since it has been 
shown [l l] that these terms are negligible in 
comparison with the others in the conservation 
of energy equation. 

The boundary conditions in dimensionless 
form for the said equations are 

w, 8, - -, - are finite at q = 0 
qa4 all 

(21) 

and 
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An examination of equations (18)-(20) to- 
gether with the prescribed boundary conditions 
reveals that a closed form solution appears to 
be improbable, if not impossible. Thus, in the 
absence of any exact solution for the dependent 
variables $, w, and 9 these variables are expanded 
in a power series in ascending order of Gr/Re’. 

The power series expansion of the dependent 
variables is taken of the form [15] 

,=,,+($h+(32~2+... (23) 

w=w,+(~w,+(~~w~+... (24) 

S=S,+(3s,+(38,+.... (25) 

For pure forced convection, Gr = 0, no circula- 
tion exists so that I(/,, = 0. However, the evalua- 
tion of the remaining dependent variables is 
more involved since it requires the substitution 
of equations (23)-(25) in equations (18)-(20) 
and the terms of like powers of Gr/Re’ grouped 
together. Taking terms up to the second order 
in the perturbation parameter Gr/Re’ the 
following three sets of partial differential equa- 
tions result. 
Zero order approximation : 

VW, - y = 0 (264 

PeGr, 
ve, + TWO = 0. 

First order approximation : 

v4*1 = Re2 1 aeo 
,/(GrRe) iw ‘OS ’ 

+f%intp 
alt 1 (274 v2w, + JGr awh ---- 

rl [ wb -- h 84 w alt 1 = 0 (27b) 

v28 1 + PrJGr rl 1 
+ 

PeGr, 
-WI = 0. 

Gr 
(27~) 

Second order approximation : 

v2B 
2 

a+,ae, I aweI 
a? w all w 1 

Pr JGr =- 
rl 1 

PrGr, -__w 
Gr ’ 

(28~) 

The general boundary conditions which are 
essential to the complete specification of the 
solution of the preceding equations are essen- 
tially equivalent to those given by equations 
(21) and (22). 

The method used in solving the preceding 
equations may be divided into two distinct 
parts. First, the partial differential equations 
are transformed into ordinary differential equa- 
tions by assuming a form of solution which, in 
addition to eliminating one of the independent 
variables and satisfying the imposed boundary 
conditions, is physically justified from the data 
of Mori et al. [2] and was successfully employed 
by Morton [3]. Second, the resulting ordinary 
differential equations are then solved by a 
novel approach discussed in detail in [ 111. 

Equations (26a) and (26b) are for Poiseuille 
flow without free convection effects and their 
solution is available in elementary texts [14]. 
The remaining equations are solved by sub- 
stituting the forced-flow solution in the equa- 
tions of first order in the perturbation para- 
meter Gr/Re’ and proceeding step by step. It 
must be noted, however, that the present 
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perturbation solution applies merely to the 
case of perturbing free convection effects on a 
p~dominantly forced convection flow. The 
detailed solution of equation (26a)-(2&) is given 
elsewhere [III. Since the expressions for $. 1-r. 
and 0 are lengthy they are given in Appendix A. 

2.6 Heat trader 
The local ~rc~fe~ntial convective heat 

transfer coefficient is defined as 

Yl’($) k dT 

h(‘) = (T, - T,) = - (T, - Tddr r=Rr (2g) 

where T, is the mixing cup temperature. In 
terms of the dimensionless variables, the local 
(circumferential) heat transfer coefficient be- 
comes 

The local Nusselt number, NUT based on the 
inside radius of the tube as the characteristic 
dimension is defined as 

Finally, substituting equation (A.3) in equation 
(31) and simplifying gives the ratio of the local 
Nusselt number to the Nusselt number for 
pure forced convection as 

N~#~ - 
Nuo 

1.0 - r[O*277 x 1O-3 Pr 

+ 0,104 x 1O-3] cos Cp + r2[2*175 

x 10-*PrZ + 1.0025 X lo-‘PT] 

+ TZ[O-688 x 10 -sPrz + 0.05 x lO+jPr 

- 0.833 x lo-71 cos 24 (32) 
where Nu, is the Nusselt number for pure 
forced convection” 

The average heat transfer coefficient h is 
defined as 20 

(33) 

If the indicated integration is performed and an 
average Nusselt number % is introduced, there 
results 

RG -= 
Nu0 

1~0 f r2[2*175 x 10-s Pr2 

-t 10025 x 10m7 Pr]. (34) 

3.1 A check on the validity and accuracy of the 
perturbation solutions 

In view of the fact that no exact solutions 
exist, a knowledge of the range of the validity 
of the present perturbation method is of con- 
siderable importance. Equations (AJHA.3) in- 
dicate that the three velocity components 
as well as the temperature distributions at 
any cross section of the tube are functions of 
Grashof, Prandtl, and Reynolds numbers. In 
order to examine the l~~ta~ons of the solutions 
of these equations, numerical calculations were 
performed to study their convergence for various 
combinations of the governing parameters. 
More specifically, the critical radii n, corres- 
ponding to, say, the maximum axial velocities 

@Or %+1t wo*1+2) were determined from the 
said equations for a fixed Prandtl number and 
for different values of the parameter r. The 
comparison at the critical radii was then made 
of the successive approximations of the axial 
velocities, i.e., 

(wo+1+2 - wo+1) d (wo+1 - wo). 

This procedure was repeated for different 
Prandtl numbers, and thus the limits of con- 
vergence were established. A similar procedure 
was followed for the temperature and the 
average Nusselt numbers [Ill. The analysis 
showed that the limits of convergence for the 
axial velocity, temperature, and average Nus- 
selt numbers may be considerably different [ 1 l]. 
This also appears to be the case in the analysis 
of Morton [3] and Iqbal and ~~~hiewi~ [4] 
and may be attributed to the Fact that the velocity 
is less sensitive to the variation in the parameter 
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r and the Prandtl number Pr than the tempera- 
ture and average Nusselt number &%. 

A detailed check of Morton’s [3] results 
indicates that his equation for the Nusselt 
number is convergent in a region where the 
temperature equation is divergent [4], and 
therefore, his results are questionable in this 
range. On the other hand, a check of Iqbal and 
Stachiewicz’s [4] results reveals that the upper 
limit for the temperature and the Nusselt 
number equations for air is at ReRa = 1500 
as compared to ReRa z 3OOOJRe for the 
present analysis. This prohibits any comparison 
between their theoretical results and available 
expe~mental data. 

3.2 Comparison of available experimental data 
with theoretical predictions 

The analytical predictions of this study are 
compared with other theoretical investigations 
and experimental data in Figs. 2 and 3. A 
comparison is given of the present analysis with 

- Present onolysis 

--- Theory Cl03 

0 Doto t23 

/ 

o ,/’ 

/-/ 

/ / / / 

7 
/’ 0 

,/’ 

1 0 

I 
, “‘3 0 0.5 I 

TOP I Bottom 

FIG. 2. Comparison of axial velocity profiles between present 
analysisandothertheoreticalandexperimentalinvestigations 

for air at r = 1200 and Pr = 0.72. 

the theory and experiment of Mori et al. [2, lo] 
for velocity and temperature dist~butions in 
the vertical plane. A reasonably good agreement 
is demonstrated between the present analysis 
and the experimental data of Mori et al. [2]. 

The correlation between the theoretical analysis 
of Mori et al. [lo] and their own data [2] is 
quite poor. It should be noted that in both the 
velocity and temperature profiles there is some 
discrepancy between the present predictions and 
the experimental data [2] at the bottom of the 
tube. As will be shown later in this region the 
vorticity is maximum. It is felt that the poorer 
agreement in this region may be attributed to 
the presence of turbulent flow which is not 
accounted for in this work. Furthermore, it can 
be concluded from both figures that in the 

2 0, 
I 

- Present onolysis 

0 I I 
IO 0.5 0 0.5 

TOP 77 Bottom 

FIG. 3. Comparison of temperature profiles in the vertical 
plane between present analysis and other theoretical and 
experimental investigations for air at r = 12OOand Pr = 0.72. 

vicinity of the tube wall both the velocity and 
temperature change abruptly, a trend which has 
been observed previously [2-4]. On the other 
hand, in the core the variation of both velocity 
and temperature with the radius is essentially 
linear. 

3.3 Prediction of theflow pattern and isotherms 
A more complete understanding of the flow 

characteristics may be gained by observing the 
flow field. As an illustration of the streamline 
pattern for the heating of air at r = 1200 is 
shown in Fig. 4. This particular value of r was 
chosen so that present results correspond to 
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the experimental data of Mori et al. [2]. In 
order to provide a more complete description 
of the combined phenomena for any one 
particular case these same values of the para- 
meters shall be used in illustrating other 
aspects of the solutions. It can be seen from 
Fig. 4 that there exist two cells of the crescent- 
eddy type symmetrical about the vertical plane 
(# = 0). This type of flow pattern has been 
photographed and discussed by Mori et af. 
[lo]. For heating, the wall temperature is 
higher than the fluid temperature, and thus the 
fluid near the wall, being hotter than that in 
the core, ascends near the wall toward the top. 

90’ 

The two upward flows along both sides of the 
tube wall meet at the upper part of the tube, 
$ = O3 change direction, and descend in the 
central portion as the IIuid moves through the 
tube. 

By defining the center of the eddy to be the 
point where I) has its maximum value it can 
be shown that the center is located at n = O-46 
and b, = 95 and 265 for the parameters of 
Fig. 4. The Iocation of the center of the eddy 
depends on the Prandtl number Pr and the 
parameter r. 

Figure 5 depicts the constant axial velocity 
lines for air at r = 1200. The concentration 
of the constant axiat velocity lines in the vicinity 
of # = n indicates high velocity gradients and 
thus a high degree of vorticity and a large shear 
stress. The constant radial and tangential 
velocity lines are presented in Figs. 6 and 7 

2709 

’ Iso*’ ’ Tubs WOII 

FIG. 5. Constant axial velocity lines for air at I- = I200 and 
Pr = 0.72. 

2700 

’ Tube wall 

FIO. 6. Constant radial velocity lines for air at r = 1200 and 
Pr = 0.72. 
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respectively. The radial velocity pattern de- 
picted in Fig. 6 reveals that the velocity is 
antisymmetric about the horizontal plane (C#J = 
x/2). The radial velocity increases as the center 
is approached, and the change in sign results 
merely from the mathematical definition. This 
is consistent with the results presented in Fig. 4. 

270 

FIG. 7. Constant tangential velocity lines for air at r = 1200 
and Pr = 0.72. 

The effects of the buoyancy force is particu- 
larly evident in Fig. 7 where the constant 
tangential velocity lines are shown. Recall 
that v is positive in the positive C#I direction. A 
close inspection of Fig. 7 reveals that the 
tangential velocity component is upwards in 
the vicinity of the tube wall and downward 
in the core region. This is in accordance with 
physical reasoning for heating of the fluid and 
may also be deduced from the streamline 
pattern of Fig. 4. Again, the change in the sign 
of the tangential velocity component results 
merely from the mathematical definition. 

The isotherms are presented in Fig. 8 for 
air at r = 1200. The region of the maximum 
temperature gradients and thus maximum heat 

transfer occurs at f$ = rt where the isotherms 
are concentrated. 

An illustration of the effect of the parameter 
r on the axial velocity and temperature profiles 

210” 90” 

180” \ Tube wall 

FIG. 8. Isotherms for air at r = 1200 and Pr = 0.72. 

for air in the vertical plane are shown in Figs. 
9 and 10, respectively. For r = 0 the buoyancy 
forces are absent and hence the problem 
reduces to a pure forced convection one as 
depicted by the solid line in both figures. As 

TOP ?) Bottom 

FIG. 9. Effect of the parameter r on the axial velocity profile 
in the vertical plane for air at Pr = 0.72. 
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r increases, the free convection effects become 
more pronounced. The secondary flow increases 
correspondingly and both the axial velocity 
and temperature profiles become distinctly 
different from those of pure forced convection. 
Furthermore, due to the secondary flows, both 
the velocity and temperature distributions 
exhibit a minima in the upper half of the tube, 
a trend which has also been observed previously 

2-5 
I I 

TOP 77 Bottom 

FIG. 10. Effect of the parameter F on the temperature profile 
in the vertical plane for air at Pr = 0.72. 

3.4 The effect of the Prandtl number and the 
parameter I’ on average Nusselt numbers 

The effect of the parameter F on the Nusselt 
number ratio ?%/Nu, is shown in Fig. 11 for 
different Prandtl numbers. The results for 
fluids with Pr ranging from 0.003 (potassium) 
to 40.0 (light oil) are presented. The trends are 
primarily due to the physical nature of the 
parameter r and are similar to those obtained 
by Mori et al. [2, lo]. It should be noted that 
for air at r = 3.6 x lo3 the average Nusselt 
number for combined free and forced convec- 
tion is twice as high as that for pure forced 
convection. 

Finally, in Fig. 12 a comparison between the 
present analysis and those of Morton [3] 
and Iqbal and Stachiewicz [4] as well as the 
experimental data for air of Mori et al. [2] and 

McComas and Eckert [8] are presented for 
the average Nusselt number as a function of 
the parameter r.t The present analysis shows 
good agreement with the experimental results 

74 

FIG. 11. Dependence of the ratio %/Nu, on F with the 
Prandtl number Pr as a parameter. 

FIG. 12. Comparison of the ratlo Nu(4)lNu, between 
present analysis and other experimental and theoretical 

investigations for air at F = 1200 and Pr = 0.72. 

[2, S]. Moreover, the limitations of the ap- 
plicability of the theoretical predictions of [3] 
and [4] are illustrated by the divergence of 
their series solution at low values of the para- 
meter r. 

t Only those data points for which sufficient information 
was given in [2] to transform the parameter Re Ra to F are 
included in the figure. 
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4. CONCLUSION 

Results of the analysis have been presented 
in graphical form. Many restrictive assumptions 
have been made in the formulation and solution 
of the problem so that the results obtained have 
a somewhat qualitative character and must 
be considered as a first approximation to the 
real problem. Nevertheless, it can be concluded 
that : 

1. The perturbation method, when properly 
employed, can be a successful tool in solving 
the governing differential equations describ- 
ing the mixed convection phenomena. 
2. The velocity and temperature profiles are 
similar to each other but differ markedly 
from their respective counterparts for pure 
forced convection. Furthermore, both the 
velocity and temperature change noticeably 
in the vicinity of the tube wall. 
3. The average Nusselt number for com- 
bined free and forced convection is sub- 
stantially higher than that of pure forced 
convection. This is due to secondary flow 
effects. 
4. For all fluids, excepting liquid metals, 
the assumption that the inside tube wall 
temperature is independent of the polar 
angle C#I is justifiable for ordinary tube 
thickness in view of the fact that the ratio of 
the thermal conductivities of the tube wall 
and the fluid is usually very high. For liquid 
metals, the dependence of the inside tube 
wall temperature on the polar angle 4, 
although more pronounced, may still be 
neglected for moderate variations in the 
local heat transfer coefficient h(4). 
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APPENDIX A 

The details of the solution of the system of equations (26aH28c) are given elsewhere [ 111. For the 
sake of brevity, only the final expressions for Ic/. W, and 19 are given below. 

The dimensionless stream function : 

t) = 4.3 x low4 P[ - 10~ + 21~~ - 12~’ + ~‘1 sin $I 

+ 0.905 x 10m9 P’[(OGI371 Pr + ONIO371) q14 

- (0.125 Pr + 0.01765)~12 + (1.172Pr + 0.182)~‘~ 

- (5.42 Pr + 1.04) q8 + (15.6 Pr + 2.82) n6 - (340 Pr + 93) q4 

+ (327.8 Pr + 90.75) ~‘1 sin 24. (Al) 

The dimensionless velocity in axial direction : 

w = 2(1 - r$) + 0.22 x 1o-4 P( -19 + 2017 - 7015 + lOOr+ - 491) cos 4 

+ 0.94 x 1O-8 P”(-24.314 + 122.5~~ - 254~~ + 282*5$ - 182.5~~ 

+ 68.5~~’ - 13.8r/12 + 1.145r$4 - O*0313rj16) 

+ (0.94 x lo-* P2( -2.908~~ + 2.42~~ -I- 7$ - 12.05~~ + 7.08r+” 

- 1~663$~ + 0.1251$~ - 0.00397r+6) 
- 0.181 x lo-’ ~2[(OWO059Pr + 0GOO059)q’6 

+ (OGO26 Pr + OGI0366)~14 + (0.0335 Pr + OG052)~12 

- (0.225 Pr + 0.04325)~‘~ + (1.0425 Pr + 0.1884)q’ 

- (42.5 Pr + 11.6)~~ + (109 Pr + 30.3)~~ - (67.35 Pr + 18~85)~2]} cos 24 (4.2) 

The dimensionless temperature : 

I3 = 0.125(q4 - 4~~ + 3) + 0.181 x 10V6 r{(lOPr +)r$l 

- (210 Pr + 30)$’ + (1125 Pr + 175)~~ - (2600Pr + 5OO)r’ 

+ (3000 Pr + 735)~~ - (1325 Pr + 381)~) cos 4 
- 0.785 x 10-l’ Pr r2[ -(0.278 Pr + 0*0278)~” 

+ (89.4Pr + 12)~‘~ - (1680Pr + 251)~~~ + (7260Pr + 1290)~‘~ 

- (15300Pr + 317O)rj’O + (22100 Pr + 4920)~~ - (24800 Pr 

+ 5780)~~ + (16800Pr + 4330)~~ - (3320Pr + 952)~~ 

- (1149.122 Pr + 399.577)] - 0.94 x 1Om8 Pr r2[3*24 - 806~~ 

+ 7.65~~ - 705~~ + 5.64~~ - 1.825#’ + 0.475~‘~ 

- 0.0704r/‘4 + 000448~16 - 0GOO0966~‘*] 

+ (0.23 x lo-* Pr P2[(0.0000926 Pr + 0GOOO0926)~18 

- (0.01224Pr + 0N)1715)~16 + (0.162Pr + 0*0249)r~‘~ 

- (1.13 Pr + 38.3)~~ + (500 Pr + 137.5)~~ 

- (436 Pr + 121)~~ + (73.73 Pr + 21.022)q2] 
- 0.795 x lo-” Pr r’[ -(0*0624 Pr + 0.0624)~‘* 
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+ (32+3Pr + 455)tji6 - (775 Pr + 116)q14 + (3520 Pr + 625)r112 

- (58OOPr f 12OO)r+" +(4830Pr -i- 1075)q' + (865Pr + 202)q6 

- (396OPr + 1022)vt4+ ~~2~~~~~ f 43f~456)qzj 

-0.47 x 10-s~2[0*13397q2 - 0*242$ $ 0*0756$ 

+ 0*1167$ - 0*125$" + 0*049qr2 - 0G0865~'4 

-t 0*000496$6 - OWOO124~'*] + 0*905 x lo-'T2 

x ~~0.~~~4~~ + 0~~84)~l~ - ~0~~03Pr 

+ 0~145~~6 + ~0.~~73~~ f 0.~27)~~4 

- (OQO161Pr + OW0390)t]'2 + (0.0108 Pr + 0~O01955)~*" 

- (0~71Pr + 0.1935)~~ + (3.41 Pr + 0*945)$ 

- (5.6 Pr + l-568)q4 + (2.89 Pr f 0+8148)q2]) cos2#. @3) 

R&nnr~On p&mm une analyse du transport de chaleur par convection for&e et naturehe comb&e 
pour un fluide quasi-incompressible s’koulant laminairement dans un tube horizontal. On suppose que 
les propritt&es physiques sont independantes de la temperature et l’on considere que le flux de chaleur 
impose sur la paroi du tube est unifarme le long du tube et tout autour de la circouference.. L’ecoulement 
et le transport de chaleur sont ttudies dans le cas special des conditions enti&ement developpees et les 
equations aux d&iv&s partielies qui en &suhent sont resotues par une m&ho& de perturbation. Des 
sohrtions ana&tiques approchees pour Ia fonction de courant et les distributions des eomposantes de vitesse 
et de temperature aussi bien que les nombres de Nusselt moyens sont p&sent&s g~p~queme~t dam une 
gamme de nombres de Prandtl et de Grashof dint&& pratique. Les vitesses, Ies temperatures et les nombres 

de Nusselt moyens prtdits sent compares avec les resultats experimentaux disponibles. 

Zusammenfassrmg-Es wird der Wlrmeiibergang bei Miscbkoavektion in einem waagerechten Rohr, in 
dem em quasiinkompressibles Fluid laminar stromt, untersucht. Die Stoffwerte werden ah unab&ngig 
von der Tempera&n angenommen. Die aufgeptigte W~~~~orndj~h~ an der Rohrwand sei g%hrn&ssig 
entlang und am Umfang des Rohres. Die Stromung und der ~~e~~rgana gelten beschr;inkt fiir 
eingeiaufene Zustiinde. Die erhaltene partielie Differentialgteichung wird mit 6lfe von Stiirtunktionen 
gel&t. Analytische NIherungslosungen ftir die Stromfuaktion, die Geschwindigkeitskomponenten und 
die Temperaturverteilung, sowie mittlere Nusselt-Zahlen werden graphisch im physikalisch interessanten 
Bereich der Prandtl- und Grashof-Zahl dargestellt. 

Serechnete Werte fur die Geschwlndigkeit, die Tempratur und mitflere Nusselt-Zahlen werden mit 
zur Verffigung stehenden ~x~~men~li~n Daten verglichen. 


